English Flag

Début du MOOC le 11 avril. Inscrivez-vous !

Les inscriptions sont ouvertes !

Participez à la construction d’une planète soutenable avec AgroParisTech !

Découvrez-la sans attendre !

Partager cette page imprimante Facebook Twitter

MIA-Paris (Applied mathematics and computing-Paris)

UMR 518, AgroParisTech, INRAE, Université Paris-Saclay

General scientific orientation

The Mia-Paris unit brings together statisticians and computer scientists specialising in modelling and statistical and machine learning for biology, ecology, environment, agronomy and agri-food. Their skills include statistical inference methods (stochastic modelling, latent variable models, Bayesian inference, statistical learning, model selection...), and algorithmic methods (generalization, domain transfer, knowledge representation). The lab develops original statistical and computational methods that are generic or motivated by specific problems in life science. Its activities are based on a good culture in the target disciplines : agronomy, agri-food, molecular biology, systems biology, ecology, environment.

Research Fields

The lab is structured into three research teams :
Team "MoRSE" (Modeling and Risks in Environmental Statistics)
♦ Study climatic, ecological, environmental risks and develop statistical methods to address these areas where data and their structures are increasingly complex.
Research topics : spatial and spatio-temporal statistics (hierarchical Bayesian models, point processes, conditional process simulations), multivariate and spatialized extremes, numerical experiments, uncertainty propagation and Bayesian decision theory, analysis and inference of random graphs, trajectory modeling.

Team "Statistic & Genome"
♦ Develop and disseminate statistical modelling and machine learning methods for the analysis of (meta)genomic, genetic or metabolomic data.
Research topics : network analysis and inference, modelling and statistics of large-scale data, segmentation and time series, supervised (classification, regression) and unsupervised (dimension reduction, clustering) learning.

Team "Ekinocs" (Learning, Expertise, Integration of Knowledge)
♦ Enable the exploitation of data from multiple and heterogeneous sources, even in flow, based on the enlightened choice of shared and multi-scale semantic representations, in order to contribute to the enrichment of expert knowledge in the field of food and life sciences.
Research topics : modeling and analysis of heterogeneous multisource data, human and machine multi-expertise (taking into account semantics), collaborative and incremental learning methods, combinatorial optimization, representation and integration of data and knowledge on the Semantic Web and the Web of linked data, learning of probabilistic models, study of causality.

For more information
- Check out the open access publications of MIA-Paris on HAL-AgroParisTech :
- Check out all MIA-Paris’ recorded productions on HAL-AgroParisTech

Contact details
mia-paris chez agroparistech.fr
+ 33 (0)1 44 08 16 64

16 rue Claude Bernard
F-75231 Paris Cedex 05
Tel: 33 (0) 1 44 08 18 43
Localiser sur une carte

Se connecter
Bureau virtuel
Annuaire, listes de diffusion
Cours en ligne AgroParisTech

Liens divers
Espace grand public
Relations presse
Adresses & plan d'accès

Se repérer sur le site internet
Plan du site internet
Index des pages

Retrouvez nous sur
facebook ico twitter ico instagram ico youtube ico dailymotion ico Suivre la vie du site

Logo du Ministère de l'Alimentation, de l'Agriculture et de la Pêche Logo Universite Paris Saclay Logo de ParisTech Logo de Agreenium

2007-2022 © AgroParisTech - Mentions légales